Identification and determination of factors encountered in marine minerals processing, influencing world metal markets

Dr. Tomasz Abramowski
MSc. Mario Cabello Marante
INTEROCEANMETAL
Interoceanmetal

- **Pioneer contractor**, Zone Clarion - Clipperton, in 2016 the exploration contract was extended for five years
- **International Organization**; the member of Interoceanmetal, IOM: Poland, Bulgaria, the Russian Federation, Cuba, the Czech Republic and Slovakia
Currently IOM develops the optimization of three technologies for the metallurgical processing of polymetallic nodules:

– **Hydrometallurgical Process** of Acid Leaching using sulfur dioxide as a reducer

– **Pyro - hydrometallurgical processing**; obtaining Mn-rich slag and subsequent hydrometallurgical treatment of Ni, Co, and Cu alloys

– **Hydrometallurgical**; HPAL process according to the technology of the Moa Bay plant, Cuba, using pyrite as a reducer and the extraction of Ni, Co, Cu and Zn with the "Resin in Pulp"
Hydrometallurgical Processing
Central Institute of geological studies of non-ferrous and precious metals, Moscow, RF

Conceptual stage

Water → Leaching → Cu, precipitation → Ni + Co, precipitation → Mn, precipitation

Leaching

Solid/liquid → Tailing → Scu (sale) → Sn + SCo(sale) → Mn(sale) → Drying, Briquetting and melting → (NH₄)₂SO₄ (sale)

Grinding → Leaching → Cu, precipitation → Ni + Co, precipitation → Mn, precipitation

H₂SO₄, SO₂, S⁰, SO₂ Flocculant, Flocculent

Drying,
Hydrometallurgical Processing
Lab tests; basic results

Extraction; %

Mn - 70
Ni – 97,5
Co – 92,5
Cu – 92,5

Sulfuric acid consumption
290 - 310 Kg / ton. PN
Pyro - Hydrometallurgical Processing
University of chemical and metallurgical technologies, Sofia, Bulgaria

Conceptual stage

Coke \downarrow \quad \text{Lignite} \downarrow

- Preparation
 - Drying
 - Grinding
 - Agglomeration

- Selective melting
 - Mn – rich slag

- Complex alloy
 - Ni, Co and Cu

- Dissolution and precipitation Cu
 - Separation
 - Liquid/Solid

- Ca (OH)$_2$ \downarrow

- \text{Tailing}

- \text{Neutralization of the solid phase}

- \text{NH}_3 \downarrow

- \text{H}_2\text{S} \downarrow

- \text{SCu(sale)}

- \text{SNi + SCo (sale)}

- \text{Precipitation Ni + Co}
 - Separation
 - Liquid/solid
Pyro - Hydrometallurgical Processing
Lab tests; basic results

Extraction, %

In the slag
Mn – 90

In the complex alloy
Ni – 92,0
Co – 93.6
Cu – 92,8

Consumption of electric power
520 - 530 KWh / ton. slag
High Pressure Acid Leaching Process (PN+limonite)

Research center for the mining – metallurgical industry, Havana, Cuba

Conceptual stage

Water \downarrow, H_2SO_4 \downarrow, Pyrite

Pulp preparation
- PN
- Limonite
- Pyrite

HPAL 240°C

Extraction Cu
Resin in Pulp
Adsorption pH 1–1.5 /
Desorption
Precipitation H_2S

Resin Lewatit TP 207

Limestone \downarrow

Zn(sale) \rightarrow SNi +SCo(sale)

Extraction Ni, Co and Zn
Resin in Pulp
Adsorption pH 4–4.5 /
Desorption
Solvent extraction Zn
Precipitation Ni + Co H_2S

Extraction Mn
pH 9
- Autoclave crystallization
- Calcination

SCu (sale)

MnO(sale)

Tailing
HPAL process
Lab tests; basic results

Extraction, %
- **Ni** – 95.5
- **Co** – 92.8
- **Cu** – 90.5
- **Zn** – 92

Sulfuric acid consumption;
320 - 350 Kg / ton of ore + PN
Facilities of the Moa Bay port to receive the polymetallic nodules
Moa Bay metallurgical plant, HPAL process
Other technologies in evaluation process

FeMn production

Mineral mixture + PN

Collaboration with the Company Orava Ferroalloy Works Istebné, OFZ, Slovak Republic.
Other technologies in evaluation process
Production; high purity powders Co, Ni, Zn and Cu

Technology "Carbonyl"

Collaboration with the Canadian Company Chemical Vapor Metal Recovery (CVMR)
Carbonyl technology
Laboratory-scale tests were carried out
Now bench-scale tests are carried out
Economic model
“Order of Magnitude”

✓ In the process of elaboration the first economic model

✓ They will be developed for the five technologies

✓ An internal tool as a first step for economic analysis
Technologies vs. Market

There are many ways to extract metals from Polymetallic Nodules, **but what is the production cost?**
Metals Market

Future increase of metals consumption; general causes

World population growth (billions)

<table>
<thead>
<tr>
<th></th>
<th>2011</th>
<th>2017</th>
<th>...</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>7</td>
<td>7.3</td>
<td>...</td>
<td>9.9 (1)</td>
</tr>
</tbody>
</table>

World urbanization increase (%)

<table>
<thead>
<tr>
<th></th>
<th>1957</th>
<th>1967</th>
<th>2014</th>
<th>...</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>21</td>
<td>50/50</td>
<td>54</td>
<td>...</td>
<td>62 (2)</td>
</tr>
</tbody>
</table>

Development of emerging economies;

China, India, Russia, Brazil...

(2) World Urbanization Prospect, 2014, UN – Dep. of Economic and Social Affair
Co and Ni

Batteries

<table>
<thead>
<tr>
<th>Ni : Co: Mn</th>
<th>8:1:1</th>
</tr>
</thead>
</table>

| 2015 – 12.2 GWh | ... | 2025 – 36.8 GWh |

Since 2016 more energy accumulated in the batteries of the EV than in other types of batteries

New electric vehicles

| Sold 2018 – 3.1 million in use. | ... | 2030 ~ 125 – 150 millions (3) |

Combustion engines; in a long process of extinction

(3) BMT Research. April 1, 2018
Cobalt; critical case

Metal sparse, deficit in 2017, 2018, ... *(5)*

Risk: ~60% occurs in a single country, not very stable

EU: Regulation 2017/821 - Due Diligence towards supplier countries at risks or in conflicts (including child labor)

Deep Sea mining; could be solution for shortage of Co

(5) Bloomerg New Energy Finance. 18.05.2018
Geographical composition of metal production and consumption

Geographical composition of metal production and consumption

(global percentage shares in 2016)

a) Production

b) Consumption

Sources: Bloomberg and ECB calculations.
In the middle of the way

✓ Questions to be answered in our Project

✓ Cooperation with Universities, Research Centers and Production Companies

Interoceanmetal focuses on 2021!

www.iom.gov.pl m.cabello@iom.gov.pl
... in the middle of difficulty lies the opportunity...
(A. Einstein 1879 – 1955)